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Oceanic and radiative forcing of medieval
megadroughts in the American Southwest
Nathan J. Steiger1*, Jason E. Smerdon1, Benjamin I. Cook2, Richard Seager1,
A. Park Williams1, Edward R. Cook1

Multidecadal “megadroughts” were a notable feature of the climate of the American Southwest over the Common
era, yet we still lack a comprehensive theory for what caused these megadroughts and why they curiously only
occurred before about 1600 CE. Here, we use the Paleo Hydrodynamics Data Assimilation product, in conjunction
with radiative forcing estimates, to demonstrate that megadroughts in the American Southwest were driven by
unusually frequent and cold central tropical Pacific sea surface temperature (SST) excursions in conjunction with
anomalously warm Atlantic SSTs and a locally positive radiative forcing. This assessment of past megadroughts
provides the first comprehensive theory for the causes of megadroughts and their clustering particularly during
the Medieval era. This work also provides the first paleoclimatic support for the prediction that the risk of American
Southwest megadroughts will markedly increase with global warming.
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INTRODUCTION
Megadroughts (1, 2) are multidecadal periods of intense aridity that
existed over much of the American West from the 9th to 16th centu-
ries [see (3) for a review]. The southwestern region of theUnited States
(hereinafter referred to as the Southwest) represents one of the main
foci of megadrought activity, the occurrence of which profoundly
affected organized societies of the time as well as the landscape and
vegetation across the area (3). The absence of any megadroughts after
the 16th century in the Southwest raises critical questions surrounding
their causes, their predominant clustering during the Medieval period,
and whether there is a substantial risk of these droughts returning in
the near future as a consequence of either natural or anthropogenic
causes (4, 5).

The El Niño–Southern Oscillation (ENSO) system and its modu-
lation of storm track variability have been the primary driver of sea-
sonal droughts in much of North America over the Instrumental era
(6). Therefore, the most prominent Southwest megadrought hypothe-
ses invoke ENSO as the probable cause but in different fashions: Either
ENSOwas radiatively forced into a persistent La Niña–like mean state
[through the dynamical thermostat mechanism (7–9)] or internal cli-
mate variability simply produced multidecadal periods of increased
La Niña events (10–15). Recent work nevertheless provides little evi-
dence for a persistent La Niña–like mean state during the Medieval
period (16–21), and although stochastic ENSO variability can explain
isolated megadroughts, their clustering before 1600 CE is extremely
difficult to explain with the ENSO variability that is characteristic of
the Instrumental era (13, 19, 22). Additionally, a warmNorth Atlantic
may suppress summer precipitation in theGreat Plains and the South-
west [e.g., (23–26)], but the support for this mechanism causing or
increasing the likelihood of megadroughts is relatively tentative (19).
RESULTS
Here, we use a newly available reconstruction product in tandem
with a global forcing estimate to directly test the association between
Southwest megadroughts and the larger oceanic and radiative forcing
conditions. The Paleo Hydrodynamics Data Assimilation product
(PHYDA) is a physically and internally consistent reconstruction
product that provides gridded hydroclimate and sea surface tempera-
tures (SSTs) globally over the Common era in addition to hydroclima-
tically relevant dynamical indices. PHYDA is a probabilistic estimate
of the time-varying state of the climate over the past 2000 years based
on a fusion of both a global climate model and a global collection of
proxy time series [see Materials and Methods and (27) for more
information about the construction of PHYDA]. Using the probabil-
istic, ensemble reconstructions of the Palmer drought severity index
(PDSI) from PHYDA, we identify 14 decadal-scale droughts, called
megadroughts herein, in the Southwest during the period 800–1925
(see Materials and Methods); all highly probable megadroughts occur
before the year 1600 [>99% ensemble agreement (fig. S1A) and in
agreement with (3)]. Therefore, we generally split our analyses into
pre- and post-1600 periods.

We find that megadroughts are associated with unusually cold
values of the NINO3.4 index, with megadrought periods shifted to
colder temperatures (Fig. 1D) especially for the lower percentiles
of the NINO3.4 probability density functions (Fig. 1G), although
there is no discernible shift in the mean state of NINO3.4. The North
Atlantic was consistently warmer during megadroughts (Fig. 1, E
and H), indicative of a large-scale state shift during the period 800–
1600 relative to a reference period of 1601–1925 (Fig. 1, E and H, and
fig. S2); this state shift is consistent with the well-known global cool-
ing trend over the preindustrial Common era (28). These SST results
in Fig. 1 are insensitive to the choice of drought definition [(29) versus
(10)] and the choice of annual or seasonal climate indices [annual versus
JJA (June, July, and August) Atlantic multidecadal oscillation (AMO)
index andmonthly versus DJF (December, January, and February) ver-
sus annualNINO3.4 index]. Such a lack of seasonal dependence is like-
ly because the AMO index from 800 to 1600 is elevated across all
seasons and the extremes in the NINO3.4 index are dominated by
the DJFmonths, the peak season of ENSO.We also find that the forced
climate response (derived from an energy balance model and historical
forcing estimates; seeMaterials andMethods) consists of fluctuations of
warmer global mean temperatures during megadroughts relative to the
1601–1925 reference period (Fig. 1, F and I); thesewarmer temperatures
are a result of periods of quiescent volcanoes and elevated solar forcing,
filtered by the long-term memory of the deep ocean (fig. S3B).
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To assess the relative importance of these climate drivers in ex-
plaining hydroclimate in the Southwest, we performed a decadal-scale
linear regression analysis over the period 800–1925 using detrended
indices (see Materials and Methods). On a decadal time scale, the
NINO3.4 index explains the most variance of Southwest PDSI (up
to 30%), while the AMO and radiative forcing each explain, on av-
erage, less than half the variance explained by the NINO3.4 index
(Fig. 2A). When multiple predictors are included, there is a small
improvement in explained variance, but the dominant factor is the
decadal NINO3.4 index (Fig. 2A). Note that our analysis here focuses
on large-scale climate phenomena that act on the annual to multiyear
time scales. Other shorter-scale climate phenomena, such as stochastic
synoptic variability, likely contribute to drought and megadrought in
the Southwest (6), but from the perspective of the paleoclimate record,
the time history of these phenomena is very likely unrecoverable.
Such phenomena likely account for the unexplained variance in
these regressions.
Steiger et al., Sci. Adv. 2019;5 : eaax0087 24 July 2019
We also tested the influence of radiative forcing on the NINO3.4
index in the decadal regression framework as a measure of the poten-
tial influence of a dynamical thermostat mechanism (7); within this
framework, we find no influence of radiative forcing on the NINO3.4
index (Fig. 2B). In contrast, however, we do find that a small, similar
amount of variance in both the AMO and local Southwest tempera-
ture can be explained by radiative forcing (Fig. 2B). For the South-
west, we interpret the locally forced response as a straightforward
mechanism:A global-scale positive radiative forcing leads to an increase
in local temperatures, which, in turn, lead to an increase in aridity. In the
temperature units of the global forcing estimate, the median local tem-
perature response is 0.12°C; on a decadal time scale, this would repre-
sent a decrease in Southwest PDSI of about 0.17 (using the linear
relationship between decadal, detrended temperature, and PDSI over
the Southwest from 800 to 1925; Fig. 2C). This forced PDSI response
is only a fraction of the PDSI excursions seen in PHYDAmegadroughts
of approximately −1 PDSI (fig. S1D); yet, a forced PDSI value of 0.17 is
NINO3.4 AMO
Forcing Megadrought

NINO3.4 index (monthly)

AMO (NASST) index

1601–1925 
Megadrought 
800–1600 
Nondrought
800–1600

A D G

B E H

C F

Forcing

I

Fig. 1. Time series and megadrought state changes. (A) The monthly NINO3.4 index from PHYDA (27) in black, with dashed gray lines showing the 5th and 95th
percentiles of the PHYDA reconstruction ensemble and the yellow line showing a 20-year locally weighted linear regression smoothing of the NINO3.4 time series.
(B) Annual AMO [or North Atlantic SST (NASST)] index from PHYDA in black, with dashed gray lines and yellow line as in (A). (C) The mean NINO3.4 and AMO
[corresponding to black lines in (A) and (B)] along with a global mean forcing estimate (see Materials and Methods) and highlighted megadrought periods. (D to
F) Probability density functions (PDFs) of temperature for the NINO3.4, AMO, and forcing estimate during the reference years of 1601–1925 (teal), all the states
during each of the megadroughts (orange), and the remaining nondrought segments from 800 to 1600 (black). NINO3.4 and AMO PDFs are for the full reconstruction
ensemble from PHYDA, while the forcing PDF is for the full ensemble forcing estimate (see Materials and Methods). (G to I) Change in percentiles of the PDFs shown in
(D) to (F) relative to the corresponding 1601–1925 reference PDF. Percentile changes show which parts of the megadrought and nondrought distributions change
relative to the reference distribution.
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about half the value required for a proposed mean state shift in South-
west PDSI seen in the North American Drought Atlas during the
Medieval megadrought period (22).

After exploring the drivers of decadal hydroclimate in the American
Southwest generally, we now turn to the causes of megadroughts spe-
cifically. For this, we use a logistic regression framework, given that we
are treatingmegadroughts as binary events.We find thatmegadroughts
are most robustly associated with cold NINO3.4 conditions and warm
AMOconditions, with the influence ofNINO3.4 being againmore than
twice as important (Fig. 2D; here, the predictors have been standardized,
thus allowing for a direct comparison of regression parameter values).
The role of a positive radiative forcing is less certain: Approximately
three-fifths of the bootstrap regression parameter estimates are posi-
tive when four outlier large volcanic eruption data points are removed
(b1 distribution for “Forc-NLV” in Fig. 2D; seeMaterials andMethods).
Large volcanic eruptions (negative forcing) appear to have no consistent
temporal relationship to megadroughts, with, for example, volcanic
eruptions bookending a megadrought in the mid-1200s or occurring
in the middle of a megadrought in the late 1400s (Fig. 1C). However,
9 of 14 megadroughts are associated with a positive shift in radiative
Steiger et al., Sci. Adv. 2019;5 : eaax0087 24 July 2019
forcing (Fig. 1, F and I), caused in the energy balance model by elevated
solar forcing and volcanic quiescence (fig. S3B). Additionally, a positive
radiative forcing on drought is supported by the linear regression anal-
ysis in Fig. 2C. To test whether the positive forcing response in the re-
gression model could be consistent with a null variable, we reran the
logistic regressions including a Gaussian random predictor; we found
that the b1 distribution for Forc-NLV in Fig. 2Dwas statistically distinct
from that of the random predictor (Kolmogorov-Smirnov test with n =
999 and a = 0.01). Given all this evidence and the simplicity of a positive
forcing mechanism, we argue that a positive radiative forcing influence
on megadroughts is more likely than a negative radiative forcing or no
forcing influence at all.

Considering the joint influence of NINO3.4, AMO, and radiative
forcing in causing megadroughts, we find that the logistic regression
model that has the highest probability of being themost explanatory is
the one that includes all three of these climate drivers (Fig. 2E); this is
indicated by two different information criteria, both of which include
a penalty for adding predictors. These logistic regression results are
also consistent with the SST and forcing excursions shown in Fig. 1,
D to I.We therefore argue that Southwestmegadroughts were primarily
D E

A CB

Fig. 2. Hydroclimate and megadrought regression analysis. (A) The bootstrap distributions of adjusted r2 for the decadal linear regression of the predictand North
American Southwest PDSI (NASW PDSI) and the predictors of NINO3.4 (or N), AMO (or A), and total forcing (Forc or F) (see Materials and Methods). For this and the other
panels in this figure, the central box mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, while the whiskers
extend to the most extreme data points not considered outliers (outliers not shown for clarity). (B) Bootstrap distributions of adjusted r2 for the decadal linear regres-
sion with the predictands of NINO3.4, AMO, and NASW averaged 2-m temperature (T2m) and the predictor of total forcing (see Materials and Methods). (C) Bootstrap
regression b1 parameter distributions for the same regressions as shown in (B) (see Materials and Methods). Here and in (D), the numbers at the top indicate the whole
percentage of data points below and above zero (below:above). (D) Bootstrap distributions of b1 regression parameter values for a logistic regression binned over
megadroughts (see Materials and Methods); here, the predictand is the binary variable of either being in a megadrought or not, while the predictors are the NINO3.4,
AMO, and forcing indices. The suffix “All” indicates regressions with all data points, and the suffix “NLV” (or no large volcanoes) indicates regressions with outlier
volcanic eruption bins removed for all variables (see Materials and Methods). (E) Percentage of bootstrap regressions for which a particular logistic regression model
has a minimum information criterion, suggesting that it is the best of the tested models (see Materials and Methods). “AIC” is the Akaike information criterion corrected
for the sample size, and “BIC” is the Bayesian information criterion. The regression models all use the megadrought predictand with different combinations of the
predictors NINO3.4, AMO, and total forcing (see Materials and Methods).
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driven by anomalously frequent and cold, unforced LaNiña conditions,
with contributions from a partially forced warm Atlantic and a forced
local temperature increase.

The analysis shown in Figs. 1 and 2 assumes from the outset that
the specific NINO3.4 and AMO indices are suitable for uncovering
the mechanisms of megadroughts. While the choices of these indices
are not without warrant based on past work, we nevertheless seek to
confirm our results without assuming the form of the variables driv-
ing megadroughts. Climate pattern frequency analysis using self-
organizing maps (SOMs) (30) (see Materials and Methods) reveals
spatial SST patterns that are consistent with the Pacific and Atlantic
forcing conditions shown previously. The SOM analysis specifically
demonstrates a robust increased incidence of cold central and eastern
Pacific SSTs duringmegadroughts relative to the 1601–1925 reference
period, with the responses for the stronger nodes 1 and 2 being the
most distinct compared to the reference range [Fig. 3, A and B (nodes
1, 2, and 4), and figs. S4, A and B (node 2), and S5, A and B (nodes 1 to
3)]; these specific patterns are concomitant with dry conditions across
the western United States, with the strongest SST patterns generally
having the most consistently dry PDSI values. Note that these SOM
patterns are emergent properties of the underlying dataset, are not
imposed a priori, and have no explicit dependence or knowledge of
Southwest megadrought conditions. The greatest pattern increases
are associated with cold Pacific SSTs co-occurring with areas of warm
Atlantic SSTs, although there is some sensitivity to the precise pattern of
warm Atlantic SSTs (cf. Fig. 3A, node 2, and fig. S5A, nodes 2 and 3).
We note, however, that because of required data preprocessing and
Steiger et al., Sci. Adv. 2019;5 : eaax0087 24 July 2019
detrending (see Materials and Methods), the warming shift in the
Atlantic associated with the Medieval Climate Anomaly is partially
removed in this SOM analysis. During megadroughts, there was also
a robust reduction of some warm Pacific SST patterns (Fig. 3, A and
B, nodes 5 and 8), which are concomitant with wetting across the
western United States. These results, of an increased frequency in
cold Pacific SSTs coupled with warming in the Atlantic and dry
conditions in the Southwest, are robust to the choice of the number
of SOM nodes (figs. S4 and S5) and drought definition [(29) versus
(10)]. These results are also consistent with a basic compositing anal-
ysis across the megadroughts (fig. S6). The SOM analysis also con-
firms that the dominant climate driver of megadroughts is unusual
periods of La Niña conditions.
DISCUSSION
The new PHYDAdataset, along withmodeling of the historical forced
climate, has allowed us to construct a more comprehensive theory of
Southwest megadroughts than has heretofore been possible. This
theory unifies SST and radiative forcingmechanisms that act together
to cause megadroughts. We confirm the hypothesis that anomalous-
ly frequent periods of cold Pacific SSTs can lead to megadroughts
(10–13), but we also find that these SST patterns in the past were un-
usually cold and unforced. Over the past 1200 years, this phenomenon
is at least twice as important for explaining Southwest megadroughts
as an Atlantic forcing or an exogenous radiative forcing (Fig. 2, A and
D). Yet, we explain the clustering ofmegadroughts before circa 1600CE
 on D
ecem

ber 17, 2020
s.sciencem

ag.org/
PDSI Temperature anomaly (std units)

A

B

+51% +161%

–27% +35%

–64%

–10% –51%

0%

Fig. 3. SOM analysis of the change in the incidence of modes of SST variability and consequent hydrological change. (A) SOM SST patterns (April to next
calendar year March annual mean) with PDSI composites (JJA) over the best matching units for the years 800–1925 in PHYDA. The boxes in the lower left corner
of each panel indicate the percent change in the frequency of occurrence of that pattern during the megadroughts relative to the 1601–1925 reference period. std
units, standard units. (B) Frequency of occurrence of the SOM SST patterns during the full reference period 1601–1925, during megadroughts within the period 800–1600,
and the remainder nonmegadrought years within the period 800–1600. The gray error bars around the reference value are the 2s range of a bootstrap resampling (see
Materials and Methods).
4 of 8

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

D
ow

nloaded 
as a result of changes in each of these climate phenomena: Cold Pacific
SST fluctuations aremore frequent andmore cold (Figs. 1, D andG, and
3), the northAtlantic is warmer (Fig. 1, E andH), and periods of positive
radiative forcing are more common (Fig. 1, F and I). Each of these
factors contributes to droughts (Fig. 2A), and their changes lead to an
increase in the occurrence of megadroughts.

These results imply that ENSO variability, in addition to local
positive radiative forcing, has the capacity to induce megadrought
conditions at any time in the future. There is evidence that these two
factors acting together may explain the drying trend in the Southwest
since the early 1980s [e.g., (31)]. However, the predictability of a con-
temporary megadrought may be limited, given that state-of-the-art
global climate models have difficulty reproducing important features
of ENSO [e.g., (32)]. Of perhaps greater concern for the long-term fu-
ture is the possibility that radiative forcing could gradually come to
dominate the hydroclimate of the Southwest, with the recurrence of
megadroughts becoming almost assured (4, 5). The results presented
here provide paleoclimatic verification of the capacity of radiative
forcing to increase the odds of megadrought. Yet, if the past is a useful
guide to the next few decades, then megadroughts could also arise
through unforced and unpredictable ENSO variability.
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MATERIALS AND METHODS
Experimental design
Paleo Hydrodynamics Data Assimilation product
The PHYDA (27, 33) is based on data assimilation, a method that
optimally fuses proxy information with the dynamical constraints
of climate models; this method simultaneously estimates both hy-
droclimate fields and corresponding atmosphere-ocean states (34).
PHYDA is based on information from a network of 2978 annually re-
solved proxy-data time series (35) togetherwith theCommunity Earth
System Model (CESM) Last Millennium Ensemble of climate model
simulations (36); as a data assimilation product, PHYDA therefore
represents an optimal amalgamation of both model and proxy
information [see (27) for more details about PHYDA]. The PHYDA
reconstructions were performed from the years 1 to 2000 CE targeting
three different temporal windows: April to the next calendar year
March annual means (indicated as A2M in figure legends), the bo-
real growing season of JJA, and the austral growing season of DJF. In
addition to seasonal and annual variables, PHYDA also includes
monthly ENSO indices that are used herein. For computing the
probability density functions shown in Fig. 1, we reran the PHYDA
reconstruction code (see “Data and materials availability”) to save
the full 998-member ensemble for the specific NINO3.4 and AMO
index variables.

PHYDA has been extensively validated against observational
data in addition to related paleoclimate reconstructions (27). Here,
we also performed comparisons with the North American Drought
Atlas for the specific region of interest (fig. S1). In addition, there
may be concerns that the dynamics and temporal variability of PHYDA
merely reflect those of the data assimilation prior, namely, the CESM
climatemodel; to explore this possibility, we analyzed the power spectra
of the North American Southwest PDSI (NASW PDSI) along with the
NINO3.4 and AMO indices and found PHYDA to be muchmore sim-
ilar to observations than to the CESM simulation used as the basis of
PHYDA (fig. S7). We also found PHYDA to be more similar to obser-
vations and less similar to CESM in the cross-correlation of the NASW
PDSIwith theNINO3.4 andAMO indices (fig. S8). Because the analysis
Steiger et al., Sci. Adv. 2019;5 : eaax0087 24 July 2019
presented here relies on realistic ENSO-hydroclimate teleconnections
in PHYDA, we also showed the point correlations between the A2M
annual NINO3.4 index and the variables of 2-m surface temperature
and PDSI in fig. S9.
Analysis period
As in previous work [e.g., (3)], we limited the beginning of the analysis
to the year 800 due to the relative dearth of proxy information before
that time (27). For the end date of the analysis, we used the year 1925,
thus excluding the period of most pronounced anthropogenic warm-
ing (fig. S2).
NASW region
For the NASW, we used the average PDSI over land in the regional box
bounded by 125°W to 105°W and 31°N to 42°N (fig. S1), which wholly
includes theU.S. states of California, Nevada, Utah, Arizona, a southern
portion of Wyoming, and both Colorado and New Mexico west of the
Rocky Mountains. This box also includes some of the northernmost
portions of Mexico where the border deviates from a straight line at
31°N. For nearly all of this region, the majority of the precipitation
falls during the winter and spring seasons.
Megadrought specification
The specific megadrought periods were determined probabilistically
using a 100-member ensemble of NASW PDSI time series based on
PHYDA; the PHYDA reconstruction code (see “Data and materials
availability”) was reran to output a 100-member ensemble of global
PDSI fields (for this analysis, the 100-member ensemble sufficiently
characterizes the full ensemble, which is much larger and more cum-
bersome to analyze), from which the averaged NASW PDSI for each
ensemble member was derived. Drought periods in each of these time
series were identified as the persistently negative PDSI values relative
to an 11-year moving average (29). We then found the ensemble agree-
ment about the existence of a drought for each year of the analysis
period 800–1925 (fig. S1A). The 14 specific megadroughts were then
identified as those periods that had at least 90% ensemble agreement
and that were at least 10 years long (fig. S1A). The general results pre-
sented here are robust to the particular choice of threshold (for agree-
ment values greater than 50%) or if the megadroughts are determined
nonprobabilistically using the ensemble mean NASW PDSI from
PHYDA.The results are also robust to the choice of drought definition
[(29) versus (10)].
Forced climate response
We estimated the historical forced climate response with a recently de-
veloped energy balance model (37, 38) that has been shown to capture
both the fast and slow components of atmosphere-ocean global climate
models as they respond to time varying forcings (37). This coupled
linear model is given by

cs
dTsðtÞ
dt

¼ FðtÞ � lTsðtÞ � eg½TsðtÞ � TdðtÞ� ð1Þ

cd
dTdðtÞ
dt

¼ g½TsðtÞ � TdðtÞ� ð2Þ

where Ts and Td are the temperature anomalies of the surface compo-
nents of the climate system and the deep ocean below themixed layer; F
is the anomalous radiative forcing (W m−2); l is the global climate
feedback factor (W m−2 K−1); g is an exchange coefficient determining
the strength of the coupling and the rate of temperature exchange be-
tween the surface and deep ocean (Wm−2 K−1); cs is the effective heat
5 of 8
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capacity of the surface components of the climate system, which are
dominated by the oceanmixed layer (W yrm−2 K−1); cd is the effective
heat capacity of the deep ocean, approximately set by the depth of heat
uptake or release during transient forcing events (39) (W yrm−2 K−1);
and e represents the ocean heat uptake efficacy (unitless).

We used this model to generate an ensemble of probable forced
temperature histories over the Common era. The process of finding
realistic model parameter combinations first began by randomly
drawing 10,000 sets of parameters (g, cs, cd, and e), sampling with
uniform likelihood from the range of parameter fits found in (38)
(g = [0.49 to 1.06], cs = [6.2 to 9.7], cd = [56 to 271], and e = [0.83
to 1.82]; these fits were computed using 16 atmosphere-ocean global
climate models that simulated an abrupt 4 × CO2 experiment within
the CMIP5 framework). In addition, we used 10,000 randomly drawn
values of l that correspond to an equilibrium climate sensitivity
(ECS) range of 1° to 10°C, consistent with the potential range from
(40), and used the relation that leq is equal to the forcing from CO2

doubling (F2×) divided by the ECS, leq = F2×/ECS = 3.44Wm−2/ECS
[e.g., (41)], so that the range of l = [0.344 to 3.44]. We then ran nu-
merical simulations of the energy balance model using the total in-
stantaneous radiative forcings from (42), F in Eq. 1, for the years
1850–2005. We kept the parameter combinations from the best 10%
(or n = 1000) of these simulations, as measured by the mean absolute
error relative to the historical global mean temperature over the pe-
riod 1850–2005 (fig. S3A) (43). These parameter combinations were
then used in simulating the years 1–2000 using historical estimates of
greenhouse gases (CO2, N2O, and CH4) (44) converted to radiative
forcing via equations from (45), solar irradiance (46), and global vol-
canic forcing (47). The volcanic forcing from (47) is given as year-
specific forcing events, which we converted to a continuous time series
by assuming a volcanic forcing e-folding time scale of 13months, con-
sistent with an observed range of about 12 to 14 months (48, 49); we
also incorporated volcanic forcing uncertainty information by gener-
ating an ensemble of 1000 forcing time series with Gaussian random
perturbations of the forcing estimate based on themagnitude of event-
specific uncertainties from (47). Using both the parameter combina-
tions and total forcing estimates, we generated 1000 forced climate
response time series for the years 1–2000; fig. S3B shows the total
forced climate response in this model and the response to individual
forcing components.

While this model is not spatially resolved, we used it here for
two reasons: (i) There are no local, Southwest forcing estimates
available before the Instrumental era. All Common era forcing es-
timates are available on the hemispheric or global scale (with any
reconstructed spatial pattern of volcanic forcing based primarily
on ice core records in only Greenland and Antarctica). A global-
scale model is therefore a conservative use of the available forcing
information. (ii) The use of a low-order model, as opposed to a global
climate model, allows us to use an updated volcanic forcing estimate
(47) and to include uncertainties associated with the volcanic forcing.
Including uncertainties (here within a Monte Carlo framework) is
particularly important, given that volcanoes are the dominant forcing
over the Common era and that their magnitude and spatial extent
can be quite uncertain.

Despite the global nature of the energy balancemodel, it can still be
representative of regional information. For example, the decadalmean
correlation between the energy balance model global mean tempera-
ture and the mean temperature of the Southwest from PHYDA is 0.4
over the analysis interval of 800–2000.
Steiger et al., Sci. Adv. 2019;5 : eaax0087 24 July 2019
Statistical analysis
Linear regression analysis
We performed a decadal-scale linear regression analysis to assess the
relative importance of climate drivers in explaining decadal hydro-
climate over the period 800–1925 (Fig. 2A); for this panel, decadal-
scale PDSI was the predictand and decadal-scale NINO3.4, AMO,
and total forcing were the predictors. We performed the univariate
and multivariate regressions within a bootstrap sampling framework
that sampled both the choice of averaging and the values in the time
series: The ensemblemean time series shown in Fig. 1were averaged at
9-, 10-, and 11-year block averages and randomly sampledwith replace-
ment such that 999 (3 × 333) total regressions were performed for
each predictor/predictand(s) option. The bootstrap sampling used here
(and for all the panels in Fig. 2) allowed us to incorporate the uncertainty
associated with the choice of averaging time and to more accurately
estimate regression parameters with a relatively small sample size
(n ≈ 110 at decadal time scales). Before computing the regressions,
the averaged time series were detrended to remove autocorrelation
(the removal of which was confirmed). The adjusted r2 values (adjusted
for the number of predictors) for all 999 bootstrap regressions are sum-
marized with box plots in Fig. 2A.

For Fig. 2 (B and C), we performed a similar decadal-scale, boot-
strap regression analysis but with NINO3.4, AMO, and NASW aver-
aged temperature as predictands and the total forcing as the predictor.
We also showed the distribution of regression parameter values
b1 (Fig. 2C), as in the regression equation y = b0 + b1x + e. These
bootstrap-generated distributions provide an estimate of the confi-
dence in b1, although they are not identical to formal linear regression
confidence intervals, which rely on assumptions that we did notmake
with the bootstrap approach. Note that the predictors here have not
been standardized because we used the magnitude of the regression
parameters in the main text; thus, the relative importance of the pre-
dictors cannot be deduced from Fig. 2C. Note also that because this
analysis only captures linear relationships, there may be further non-
linear causal factors that are not accounted for.
Logistic regression analysis
We performed a logistic regression analysis to directly assess the role
of climate drivers in explainingmegadroughts in the Southwest (Fig. 2,
D and E). For this analysis, the predictand is the binary variable of
being in a megadrought or not being in a megadrought and the pre-
dictors are the ensemblemeanNINO3.4, AMO, and total forcing time
series as in Fig. 1C (local temperature is not included in the regression
model because PDSI is explicitly dependent on temperature). Because
of the strong autocorrelation in the annual megadrought time series,
we binned all the relevant annual time series according to the bound-
aries of the start and end years of themegadroughts. Eachmegadrought
period is thus amegadrought bin (n = 14), and the surrounding periods
are nonmegadrought bins that are divided according to the follow-
ing rule: If a given nondrought period is larger than the average
megadrought bin size of 22 years, then that period is divided into the
largest possible equal (or equal ±1)–sized bins such that no bin is larger
than 22 years; the continuous nondrought periods at the beginning
and end of the time series also follow this rule. The predictor variables
of NINO3.4, AMO, and total forcing are averaged over each bin seg-
ment. The logistic regression for the probability of megadrought during
a given bin, p = Pr (Y = 1 ∣ X = x), thus takes the form logit(p) = log
[p/(1− p)] = b0 + b1x1 +…+ bkxk for k predictors. Because the bins are
of varying sizes, the regression is weighted by the size of the bin. In
addition, each variable is standardized so that the relative influence
6 of 8
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of each variable can be gauged by comparing the bi values. To address
the issue of small sample size (n = 54 total bins) and to be commensu-
rate with Fig. 2 (A to C), we performed the regression using a bootstrap
sampling with replacement 999 times for each predictor/predictand(s)
option. From this, we showed the b1 distributions (the bi distribu-
tions for multivariate logistic regression were very similar), and on
the basis of the bootstrap sampling, we showed two different in-
formation criteria for determining the best regression model: the
Akaike information criterion (AIC) corrected for the sample size and
the Bayesian information criterion (BIC); both information criteria in-
clude a penalty term for the number of model parameters. For each
bootstrap regression, the same randomly drawn data points were used
for all the predictor/predictand(s) options, and the regression model
with theminimumAIC and BIC was recorded; the bars in Fig. 2E show
the percentage of the bootstrap iterations where a given model had the
lowest AIC and BIC and was thus the “best”model for those randomly
drawn data points.

A further complication is that a few very large volcanic eruptions in
the forcing time series introduce outliers that can influence the regres-
sion. Thus, in Fig. 2 (D and E), we showed two logistic regression analy-
ses with one using the full time series and another where four outlying
bins were removed for all regression variables (these corresponded to
two megadrought bins and two nondrought bins); the outliers in the
total forcing time series were considered as those values that were more
than three scaled median absolute deviations away from the median
(the default outlier detection method of MATLAB).
SOM analysis
SOMs are a neural network-based cluster analysis (30) that has been
used recently in the climate sciences to describe the continuum of cli-
mate patterns within a dataset [e.g., (50, 51)]. An analysis of climate
modes using SOMs is conceptually similar to traditional principal
component analysis: The “nodes” of a SOM represent the primary
modes of the underlying climate field. A critical advantage of a SOM
analysis compared to a principal component analysis is that it does not
impose linearity and orthogonality on states thatmay be related in non-
linear, nonorthogonal ways; practically, this feature makes SOMs more
likely to correspond to physically plausible patterns [e.g., (52)].

Here, we used the SOM algorithm to assign annual SST anomaly
fields to spatial patterns of a preset number. The SOMalgorithm creates
spatial patterns that maximize their similarity to the underlying SST
fields (by minimizing their Euclidian distance) and then assigns each
annual SST field to the best matching pattern. The SOM patterns are
approximately themean of the assigned SST fields and are thus approx-
imately a composite of relatively similar SST fields (50). In addition, the
SOM analysis organizes the patterns such that similar patterns are as-
signed to nearby locations within a regular two-dimensional grid. Thus,
this full process allows one to visualize a reduced space continuum of
patterns in the dataset (Fig. 3 and figs. S4 and S5).

For the SOM analysis, the SST fields are preprocessed by detrend-
ing the SST fields (removing the linear trend at each grid point over
the full analysis period, 800–1925; c.f. fig. S2); this detrending prevents
spurious trends in the pattern occurrence (51), although it does re-
move somewhat the influence of the warmAMO in the early centuries
of the analysis. As in (50), we applied an area weighting of the SST
fields according to the cosine of latitude because PHYDA is on a reg-
ular latitude-longitude grid. The SOM algorithm keeps track of which
year’s SST field has been assigned to which best matching pattern (or
“best matching unit”), and we made composites of JJA PDSI over the
years assigned to each pattern, as shown in Fig. 3 and figs. S4 and S5.
Steiger et al., Sci. Adv. 2019;5 : eaax0087 24 July 2019
For the bootstrap resampling for Fig. 3B, we performed a 500 itera-
tion bootstrap resampling of the same number of years as in the mega-
droughts, drawn from the reference period; corresponding ranges for
the nondrought years are very similar. Thus, they are not shown for
clarity.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/7/eaax0087/DC1
Fig. S1. Ensemble drought agreement and comparison of NASW PDSI indices.
Fig. S2. Global mean temperature from PHYDA.
Fig. S3. Energy balance model estimates of the historical, global mean forced climate
response.
Fig. S4. SOM analysis using six SOM nodes.
Fig. S5. SOM analysis using 12 SOM nodes.
Fig. S6. Temperature and PDSI composite over the megadroughts.
Fig. S7. Power spectra comparisons.
Fig. S8. Cross-correlation comparisons.
Fig. S9. NINO3.4 correlation maps.
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